

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 689 (2004) 1431–1435

www.elsevier.com/locate/jorganchem

α , β -(Phosphino)(aminocarbene) and α , ω -(phosphino)(oxyaminocarbene): new bidentate ligands for transition metal complexes

Nathalie Merceron-Saffon ^a, Heinz Gornitzka ^a, Antoine Baceiredo ^{a,*}, Guy Bertrand ^{a,b,*}

^a Laboratoire Hétérochimie Fondamentale et Appliquée, UMR 5069, Université Paul Sabatier, 118 route de Narbonne,

F-31062 Toulouse cedex 04, France

^b UCR-CNRS Joint Research Chemistry Laboratory, UMR 2282, Department of Chemistry, University of California, Riverside, CA 92521-0403, USA

Received 21 December 2003; accepted 2 February 2004

Abstract

Direct complexation of (amino)(phosphino)carbene 1a and (amino)(oxy)carbene 1b featuring a phosphino group in position-6 to the carbene with $[Rh(CO)_2Cl]_2$ has been studied. With the 1,2-bidentate ligand 1a, an original cationic complex 2 featuring two (amino)(phosphino)carbenes η^2 -bonded to the metal has been isolated in 79% yield. In the case of the 1,6-bidentate ligand 1b, a rhodium(I) complex 3 in which the carbene is in *trans* position relative to the CO ligand was obtained in 85% yield. Both compounds were fully characterized including X-ray diffraction studies. 2004 Elsevier B.V. All rights reserved.

Keywords: (Amino)(phosphino)carbene; (Amino)(oxy)carbene; Bidentate ligands; Rhodium complexes

1. Introduction

Over the years the success of homogeneous catalysis can largely be attributed to the development of a diverse range of ligand frameworks that have been used to tune the behaviour of the various systems. A particularly good example is the recent spectacular achievements that have been made using N-heterocyclic carbene (NHC) ligands [1]. It is noteworthy that although NHCtransition metal complexes have been known since 1968 [2] and that their organometallic chemistry was investigated by Lappert in the sixties [3], the recent developments in their application as scaffolds in catalysis have only been made possible because of the availability of stable N-heterocyclic carbenes [4]. Although it is possible to tune the structure of carbene ligands to some extent, the diversity possible is by far out reached by that possible for their phosphorus-based counterparts. Obstacles to extending the range of carbenes available

0022-328X/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2004.02.002

mainly reside in the supposed inherent instability of carbenes, which is explained by their six-valence-electron shell that defies the octet rule. Our group has prepared a variety of new types of stable carbene. However, direct complexation of the first of them, namely the (phosphino)(silyl)carbenes [1a,5], has not yet been reported, and all our attempts have failed. The apparent reluctance of these carbenes to act as ligands has recently been tentatively rationalized by theoretical studies [6]. In marked contrast, we have found that treatment of the [2,6-bis(trifluoromethyl)phenyl](phosphino)carbene A [7] with half an equivalent of $[RhCl(nbd)]_2$ in toluene at -50 °C immediately and quantitatively affords the corresponding carbene complex B (Scheme 1) [8]. Based on NMR spectroscopy and X-ray diffraction study, we concluded that the carbene–metal interaction consists almost exclusively of donation of the carbene lone pair into an empty metal-based orbital. Back-donation from the metal to the carbene center is negligible compared to that from the phosphorus lone pair. Carbene A is a strong σ -donor!

Here we report the direct synthesis of transition metal complexes from the stable (amino)(phosphino)carbene

^{*} Corresponding author. Tel.: +1-909-787-2719; fax: +1-909-787- 2725.

E-mail address: [gbertran@mail.ucr.edu](mail to: gbertran@mail.ucr.edu) (G. Bertrand).

1a [9] and (amino)(oxy)carbene 1b [10] featuring a phosphino group in position-6 with respect to the carbene center. Carbene 1a has been prepared by deprotonation of the corresponding iminium salt, while carbene 1b has been synthesized by simple addition of the 3,5-di-tert-butyl-ortho-quinone to carbene 1a (Scheme 2).

2. Results and discussion

The (phosphino)(amino)carbene 1a reacted at -78 °C with 0.25 equivalent of $[Rh(CO)_2Cl]_2$. The reaction proceeded very cleanly, and complex 2 was isolated as red crystals in 79% yield by recrystallization from a THF solution at -30 °C (Scheme 3). The presence of two phosphinocarbene ligands was indicated by the multiplicity of the 13 C NMR signals for the CO (201.0, dt, $J_{\text{Rh-C}} = 86$, $J_{\text{P-C}} = 16$ Hz) and C_{carbene} nuclei (227.0, dt, $J_{\text{Rh}-\text{C}} = 24$, $J_{\text{P}-\text{C}} = 24$ Hz). The high field position $(-58.6$ ppm) and the large phosphorus–rhodium coupling constant $(J_{P-Rh} = 102 \text{ Hz})$ observed in the ³¹P NMR spectrum suggested the formation of threemembered metallocycles. The η^2 -coordination mode was unambiguously established by an X-ray diffraction study (Fig. 1). Complex 2 adopts a distorded squarebased pyramid structure with the CO ligand in axial position. The carbene–rhodium bond distances (2.00 Å)

Fig. 1. Solid state structure of complex 2 (ellipsoids are drawn at the 50% probability level, and hydrogen atoms are omitted for clarity). Selected bond lengths $[\AA]$ and angles [°]: $Rh(1)-C(1)$ 2.000(3); $Rh(1)-$ C(16) 2.007(3); Rh(1)–C(31) 1.891(3); Rh(1)–P(1) 2.3480(8); Rh(1)– P(2) 2.3262(8); C(1)–N(1) 1.299(4); C(16)–N(2) 1.302(4); P(1)–C(1) 1.791(3); P(2)–C(16) 1.798(3); C(31)–O(1) 1.135(4); P(1)–Rh(1)–C(1) 47.83(9); P(2)–Rh(1)–C(16) 48.36(9); P(1)–Rh(1)–C(31) 110.04(10); C(1)–Rh(1)–C(31) 99.57(13); P(2)–Rh(1)–C(31) 112.05(10); C(16)– Rh(1)–C(31) 100.35(13).

are in the range typical for C–Rh single bonds, and very similar to that observed for related N-heterocyclic carbene rhodium complexes $(2.00-2.04 \text{ Å})$ [11]. The phosphorus–rhodium bond distance (2.348 Å) lies at the upper limit of the range typical for P–Rh single bonds [12]. The nitrogen atom adopts a trigonal planar geometry with a short NC bond distance of 1.30 \AA , which is identical to that of free (amino)(phosphino)carbenes (1.30 Å) . This indicates that, the carbene–metal interaction results from the donation of the carbene lone pair into an empty metal-based orbital. Back-donation from the metal to the carbene centre is almost negligible compared to that from the nitrogen lone pair.

Rhodium complex 3 was prepared by treatment of a THF solution of the (amino)(oxy)carbene 1b with 0.5 equivalent of $[Rh(CO)_2Cl]_2$. It was isolated in 85% yield as yellow crystals by slow recrystallisation from a pentane solution at 0 $\rm{^{\circ}C}$ (Scheme 4). The $\rm{^{31}P}$ NMR spectrum showed a sharp doublet at 202 ppm with a large phosphorus–rhodium coupling constant (199 Hz) and in

Scheme 4.

Fig. 2. Solid state structure of complex 3 (ellipsoids are drawn at the 50% probability level, and hydrogen atoms are omitted for clarity). Selected bond lengths $[\AA]$ and angles [°]: $Rh(1)$ –C(1) 2.079(9); $Rh(1)$ – P(1) 2.225(2); Rh(1)–C(8) 1.870(10); Rh(1)–Cl(1) 2.396(2); C(1)–N(1) 1.324(11); C(1)–O(1) 1.330(9); C(8)–O(3) 1.148(10); P(1)–Rh(1)–C(1) 90.0(2); C(1)–Rh(1)–Cl(1) 88.3(2); P(1)–Rh(1)–C(8) 97.0(3); C(8)– $Rh(1)$ –Cl(1) 85.8(3).

the 13 C NMR spectrum the C_{carbene} nuclei appeared to be also coupled to ¹⁰³Rh ($\delta = 226$ ppm, $J_{\text{Rh-C}} = 47$ Hz), which suggest that both the phosphine and carbene fragments are coordinated to the metal. Interestingly only one isomer is formed and the trans-orientation of the carbene with respect to the CO ligand has been established by a single crystal X-ray diffraction study (Fig. 2). The rhodium center is in a nearly square planar environment (sum of bond angles around Rh 361.1°). The Rh–P distance of 2.225 \AA is slightly shorter compare with the expected value for a rhodium(I)–phosphine complex [12]. Interestingly, the $Rh-C_{\text{carbene}}$ bond length of 2.079 \AA is very similar to the values observed in rhodium complexes bearing a Cl and a diaminocarbene ligand *cis* to one another [13]. These observations are in line with the observed frequency of the IR absorption $v(CO)$ (1997 cm⁻¹) [14].

3. Conclusion

The (amino)(phosphino)carbene 1a and (amino)(oxo) carbene 1b are certainly excellent candidates as ligand for transition metal catalysts, in which a strong σ -donor ligand and a relatively labile ligand are desirable.

4. Experimental

All experiments were carried out under dry argon using standard Schlenk or dry box techniques. THF was distilled under argon from sodium benzophenone. ³¹P NMR, ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AMX400 instrument. Chemical shifts are reported in ppm downfield from Me4Si and were referenced to solvent peaks (${}^{1}H, {}^{13}C$) or external 85% H_3PO_4 $(31P)$. Coupling constants are given in Hz. [Rh(CO)₂Cl]₂ was used as supplied from Aldrich.

4.1. Synthesis of the $(amino)(phosphino)$ carbene 1a

To a THF solution (5 ml) of C-(phosphino)iminium salt (0.2 mmol) was added 1.5 equivalent of LiHMDS at -60 °C. Immediately a red colour appeared, and the ^{31}P NMR spectroscopy indicated the quantitative formation of carbene 1a. This compound can be stored in solution for a few days at $0 °C$, and was used without any further purification. 31 P-NMR (THF-d₈): 7.9 ppm. ¹H-NMR (THF-d₈): 1.11 (d, 18H, ${}^{3}J_{\text{P-H}} = 10.8$, CH₃CP), 1.30 (d, 12H, ${}^{3}J_{H-H} = 6.4$, CH₃CN), 4.50 (m, 1H, CHN), 5.31 $(m, 1H, CHN).$ ¹³C-NMR (THF-d₈): 20.5 $(m,$ CH₃CHN), 24.7 (m, CH₃CHN), 29.4 (d,²J_{P–C} = 13.9, CH₃C), 32.6 (d, $J_{P-C} = 18.9$, CH₃CP), 52.9 (m, CHN), 63.3 (m, CHN), 346.6 (d, $^{1}J_{P-C} = 57.3$, PCN).

4.2. Synthesis of the (amino) (oxo)carbene **1b**

To a THF solution (5 ml) of (amino)(phosphino)carbene 1a (0.2 mmol) was added 1 equivalent of 3,5-di-tert-butyl-ortho-quinone at -30 °C. Immediately a deep green colour appeared, and the $31P$ NMR spectroscopy indicated the quantitative formation of carbene 1b. After evaporation of the solvent, carbene 1b was obtained as a deep green oil $(90\% \text{ yield})$. ³¹P-NMR $(THF-d_8, 253 K):152.5.$ ¹H-NMR (THF-d₈, 253 K):1.17 (d, 18H, $J_{\text{P-H}} = 11.2$, CH₃CP), 1.26 (d, 6H, $J_{\text{H-H}} = 6.6$, CH_3CN , 1.33 (s, 9H, CH₃C), 1.37 (s, 9H, CH₃C), 1.42 (d, 6H, $J_{H-H} = 6.3$, CH₃CN), 3.85 (sept, 1H, $J_{H-H} = 6.3$, CHN), 5.21 (sept, 1H, $J_{H-H} = 6.6$, CHN), 6.97 (d, 1H, $J_{\text{H-H}} = 1.52$, H_{aro}), 7.44 (dd, 1H, $J_{\text{H-H}} = 1.52$ Hz, $J_{\rm P-H} = 2.8$, H_{aro}); ¹³C-NMR (THF-d₈, 253 K): 20.2 (s broad, CH3CHN), 26.0 (s broad, CH3CHN), 27.4 (d, $J_{\text{P-C}} = 15.5$, CH₃CP), 30.5 (s, CH₃C), 31.4 (s, CH₃C), 34.9 (s, CH₃C), 35.3 (s, CH₃C), 35.8 (d, $J_{P-C} = 25.7$, CH3CP), 43.2 (s, CHN), 46.8 (s, CHN), 113.9 (d, $J_{\text{P-C}} = 24.2 \text{ Hz}, \text{ C}_{\text{aro}}$, 115.4 (s, C_{aro}), 140.8 (s, C_{aro}), 145.8 (s, C_{aro}), 146.5 (s, C_{aro}), 152.2 (d, $J_{P-C} = 9.1$ Hz, C_{aro}), 268.1 (s, O–C–N).

4.3. Synthesis of the (amino)(phosphino)carbene rhodium complex 2

A THF solution (5 ml) of (amino)(phosphino)carbene 1a (0.2 mmol) was added to 0.25 equivalent of $[Rh(CO)_2Cl]_2$ at -78 °C. After the solution mixture was warmed to room temperature, ³¹P NMR spectroscopy indicated the quantitative formation of complex 2, which was obtained as a red powder after evaporation the solvent. Red crystals of 2 were obtained from a THF solution at -30 °C (79% yield). m.p. 155–156 °C. 31 P-NMR (THF-d₈): –58.6 ppm (d, $J_{\text{Rh-P}} = 102$). ¹H-NMR (THF-d8): 1.37 (m, 18H, CH3CP), 1.46 (m, 18H, CH₃CP), 1.47 (d, $J_{H-H} = 6.2$, 6H, CH_3 -CH), 1.55 (d, $J_{H-H} = 6.4, 6H, CH_3-CH$, 1.85 (d, $J_{H-H} = 6.4, 6H$, CH_3 -CH), 1.97 (d, $J_{H-H} = 6.2$, 6H, CH_3 -CH), 4.22 (sept, $J_{H-H} = 6.2$, 2H, CH–N), 4.63 (sept, $J_{H-H} = 6.4$, 2H, CH–N). ¹³C-NMR (THF-d₈): 19.2 (s, CH₃–CH), 20.3 (s, CH_3 -CH), 21.2 (s, CH_3 -CH), 21.3 (s, CH_3 -CH), 30.5 (s, CH_3-C), 31.8 (s, CH_3-C), 36.9 (s, CH_3CP), 37.1 $(s, CH₃CP), 52.6$ (s, CHN), 74.9 (s, CHN), 201.0 (dt, $J_{\text{Rh-C}} = 86$, $J_{\text{P-C}} = 16$, CO), 227.0 (dt, $J_{\text{Rh-C}} = 24$, $J_{P-C} = 24$, PC).

4.4. Synthesis of (amino)(oxo)carbene rhodium complex 3

A THF solution (5 ml) of amino(oxy)carbene 1b (0.2 mmol) was added to 0.5 equivalent of $[Rh(CO),Cl]$ ₂ at -78 °C. After the solution mixture was warmed to room temperature, ^{31}P NMR spectroscopy indicated the quantitative formation of complex 3. After evaporation the solvent, the residue was extracted with pentane (50 ml). Yellow crystals of 3 were obtained from a pentane solution at 0 °C (85% yield). m.p. 149 °C (dec.). ^{31}P -NMR (CDCl₃): 202 ppm (d, $J_{\text{Rh-P}} = 199$). ¹H-NMR $(CDCl₃)$: 1.27 (s, 9H, CH₃C), 1.39 (s, 9H, CH₃C), 1.41 $(d, J_{P-H} = 16.0, 18H, CH_3CP), 1.50 (d, J_{H-H} = 6.6, 6H,$ CH_3 -CH), 1.60 (d, $J_{H-H} = 6.6$, 6H, CH_3 -CH), 4.17 (m, 1H, CH–N), 6.50 (sept, $J_{H-H} = 6.6$, 1H, CH–N), 7.21 (m, 2H, H_{aro}). ¹³C-NMR (CDCl₃): 24.5 (s broad, CH_3 –CH), 27.0 (s broad, CH₃–CH), 29.7 (d, J_{P–C} = 6, CH_3 –CP), 31.6 (s, CH_3 –C), 31.8 (s, CH_3 –C), 35.0 (s, CH₃C), 35.9 (s, CH₃C), 39.1 (dd, $J_{\text{Rh-C}} = 2$, $J_{\text{P-C}} = 22$, CH₃CP), 50.1 (s, CHN), 58.7 (s, CHN), 121.0 (s, C_{aro}), 121.0 (d, $J_{P-C} = 2$, C_{aro}), 143.0 (d, $J_{P-C} = 2$, C_{aro}), 143.1 (s, C_{aro}), 146.2 (d, J_{P–C} = 7, C_{aro}), 147.7 (s, C_{aro}), 193.9 (dd, $J_{\text{Rh}-\text{C}} = 57$, $J_{\text{P}-\text{C}} = 14$, CO), 226.2 (d, $J_{\text{Rh}-\text{C}} = 47$, RhCN). IR (CH₂Cl₂): 1997 cm⁻¹ (CO).

4.5. Crystallographic data for complexes 2 and 3

Data for all structures were collected at low temperature $T = 173(2)$ K using an oil-coated shock-cooled crystal on a Bruker-AXS CCD 1000 diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods (SHELXS 97) [15] and all nonhydrogen atoms were refined anisotropically using the least-squares method on F^2 [16]. Crystal data for 2: $C_{36}H_{72}F_3N_2O_5P_2RhS$, $M = 866.87$, monoclinic, space group $P2_1/n$ with $a = 19.3806(15)$, $b = 11.0293(9)$, $c = 20.6518(16)$ Å, $\beta = 93.259(2)$, $V = 4407.3(6)$ Å³, $Z = 4$. 25,024 reflections (9039 independent, $R_{\text{int}} =$ 0.0487), largest electron density residue: 0.980 e A^{-3} ,

 $R_1 = 0.044$ (for $I > 2\sigma(I)$) and $wR_2 = 0.0862$ (all data). Crystal data for 3: $C_{30}H_{52}CINO_{3}PRh$, $M = 644.06$, monoclinic, space group $P2_1/n$ with $a = 12.438(3)$, $b = 20.513(5), c = 13.205(3)$ \AA , $\beta = 103.907(4)$ °, $V =$ 3270.4(12) A^3 , Z = 4. 12,500 reflections (3939 independent, $R_{\text{int}} = 0.1086$, largest electron density residue: 1.453 e A^{-3} , $R_1 = 0.0587$ (for $I > 2\sigma(I)$) and $wR_2 =$ 0:1468 (all data).

5. Supplementary material

CCDC-226835 [2], 226836 [3] contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at [www.ccdc.cam.ac.uk/](http://www.ccdc.cam.ac.uk/conts/retrieving.html) [conts/retrieving.html](http://www.ccdc.cam.ac.uk/conts/retrieving.html) (or from the Cambridge Crystallographic data Centre, 12 Union Road, Cambridge, CB21EZ, UK; fax: +44-1223-336-033 or e-mail: [deposit@ccdc.cam.ac.uk](mail to: mailto:deposit@ccdc.cam.ac.uk)).

Acknowledgements

We are grateful to the ACS/PRF (38192-AC4), and RHODIA for financial support of this work.

References

- [1] (a) D. Bourissou, O. Guerret, F.P. Gabbaï, G. Bertrand, Chem. Rev. 100 (2000) 39;
	- (b) L. Jafarpour, S.P. Nolan, Adv. Organomet. Chem. 46 (2001) 181;
	- (c) W.A. Herrmann, Angew. Chem., Int. Ed. 41 (2002) 1290;
- (d) T.M. Trnka, R.H. Grubbs, Acc. Chem. Res. 34 (2001) 18.
- [2] K. Ofele, J. Organomet. Chem. 12 (1968) 42.
- [3] D.J. Cardin, B. Cetinkaya, M.F. Lappert, Chem. Rev. 72 (1972) 545.
- [4] (a) A.J. Arduengo, R.L. Harlow, M. Kline, J. Am. Chem. Soc. 113 (1991) 361;

(b) A.J. Arduengo, J.R. Goerlich, W.J.A. Marshall, J. Am. Chem. Soc. 117 (1995) 11027;

- (c) D. Enders, K. Breuer, G. Raabe, J. Runsink, J.H. Teles, J.P. Melder, K. Ebel, S. Brode, Angew. Chem., Int. Ed. 34 (1995) 1021.
- [5] (a) A. Igau, H. Grützmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 110 (1988) 6463; (b) A. Igau, A. Baceiredo, G. Trinquier, G. Bertrand, Angew. Chem., Int. Ed. Engl. 28 (1989) 621.
- [6] (a) W.W. Schoeller, D. Eisner, S. Grigoleit, A.J.B. Rozhenko, A. Alijah, J. Am. Chem. Soc. 122 (2000) 10115; (b) W.W. Schoeller, A.J.B. Rozhenko, A. Alijah, J. Organomet. Chem. 617 (2001) 435.
- [7] C. Buron, H. Gornitzka, V. Romanenko, G. Bertrand, Science 288 (2000) 834.
- [8] E. Despagnet, K. Miqueu, H. Gornitzka, P.W. Dyer, D. Bourissou, G. Bertrand, J. Am. Chem. Soc. 124 (2002) 11834.
- [9] N. Merceron, K. Miqueu, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 124 (2002) 6806.
- [10] N. Merceron-Saffon, A. Baceiredo, H. Gornitzka, G. Bertrand, Science 301 (2003) 1223.
- [11] W.A. Herrmann, J. Fischer, K. Öfele, G.R.J. Artus, J. Organomet. Chem. 530 (1997) 259.
- [12] (a) A.G. Orpen, B. Brammer, F.H. Allen, O. Kennard, D.G. Watson, R. Taylor, J. Chem. Soc. Dalton Trans. (1989) S1; (b) 3D search and research using the cambridge structural database F.H. Allen, O. Kennard, Chemical Design Automation News 8 (1) (1993) 1 & 31–37.
- [13] W.A. Herrmann, L.J. Gooden, M. Spiegler, J. Organomet. Chem. 574 (1997) 357.
- [14] (a) J. Huang, E.D. Stevens, S.P. Nolan, Organometallics 19 (2000) 1194; (b) M.J. Doyle, M.F. Lappert, P.L. Pye, P. Terreros, J. Chem. Soc., Dalton Trans. (1984) 2355.
- [15] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467.
- [16] G.M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.